Potential Vorticity Structure across the Gulf Stream: Observations and a PV-Gradient Model

2001 ◽  
Vol 31 (2) ◽  
pp. 637-644 ◽  
Author(s):  
Oleg Logoutov ◽  
George Sutyrin ◽  
D. Randolph Watts
2016 ◽  
Vol 46 (1) ◽  
pp. 327-348 ◽  
Author(s):  
Robert E. Todd ◽  
W. Brechner Owens ◽  
Daniel L. Rudnick

AbstractPotential vorticity structure in two segments of the North Atlantic’s western boundary current is examined using concurrent, high-resolution measurements of hydrography and velocity from gliders. Spray gliders occupied 40 transects across the Loop Current in the Gulf of Mexico and 11 transects across the Gulf Stream downstream of Cape Hatteras. Cross-stream distributions of the Ertel potential vorticity and its components are calculated for each transect under the assumptions that all flow is in the direction of measured vertically averaged currents and that the flow is geostrophic. Mean cross-stream distributions of hydrographic properties, potential vorticity, and alongstream velocity are calculated for both the Loop Current and the detached Gulf Stream in both depth and density coordinates. Differences between these mean transects highlight the downstream changes in western boundary current structure. As the current increases its transport downstream, upper-layer potential vorticity is generally reduced because of the combined effects of increased anticyclonic relative vorticity, reduced stratification, and increased cross-stream density gradients. The only exception is within the 20-km-wide cyclonic flank of the Gulf Stream, where intense cyclonic relative vorticity results in more positive potential vorticity than in the Loop Current. Cross-stream gradients of mean potential vorticity satisfy necessary conditions for both barotropic and baroclinic instability within the western boundary current. Instances of very low or negative potential vorticity, which predispose the flow to various overturning instabilities, are observed in individual transects across both the Loop Current and the Gulf Stream.


1998 ◽  
Vol 5 (3) ◽  
pp. 145-151
Author(s):  
A. D. Kirwan, Jr. ◽  
B. L. Lipphardt, Jr.

Abstract. Application of the Brown-Samelson theorem, which shows that particle motion is integrable in a class of vorticity-conserving, two-dimensional incompressible flows, is extended here to a class of explicit time dependent dynamically balanced flows in multilayered systems. Particle motion for nonsteady two-dimensional flows with discontinuities in the vorticity or potential vorticity fields (modon solutions) is shown to be integrable. An example of a two-layer modon solution constrained by observations of a Gulf Stream ring system is discussed.


2007 ◽  
Vol 64 (3) ◽  
pp. 695-710 ◽  
Author(s):  
H. de Vries ◽  
J. D. Opsteegh

Abstract Optimal perturbations are constructed for a two-layer β-plane extension of the Eady model. The surface and interior dynamics is interpreted using the concept of potential vorticity building blocks (PVBs), which are zonally wavelike, vertically confined sheets of quasigeostrophic potential vorticity. The results are compared with the Charney model and with the two-layer Eady model without β. The authors focus particularly on the role of the different growth mechanisms in the optimal perturbation evolution. The optimal perturbations are constructed allowing only one PVB, three PVBs, and finally a discrete equivalent of a continuum of PVBs to be present initially. On the f plane only the PVB at the surface and at the tropopause can be amplified. In the presence of β, however, PVBs influence each other’s growth and propagation at all levels. Compared to the two-layer f-plane model, the inclusion of β slightly reduces the surface growth and propagation speed of all optimal perturbations. Responsible for the reduction are the interior PVBs, which are excited by the initial PVB after initialization. Their joint effect is almost as strong as the effect from the excited tropopause PVB, which is also negative at the surface. If the optimal perturbation is composed of more than one PVB, the Orr mechanism dominates the initial amplification in the entire troposphere. At low levels, the interaction between the surface PVB and the interior tropospheric PVBs (in particular those near the critical level) takes over after about half a day, whereas the interaction between the tropopause PVB and the interior PVBs is responsible for the main amplification in the upper troposphere. In all cases in which more than one PVB is used, the growing normal mode configuration is not reached at optimization time.


2021 ◽  
Vol 51 (1) ◽  
pp. 207-228
Author(s):  
Aviv Solodoch ◽  
Andrew L. Stewart ◽  
James C. McWilliams

AbstractLong-lived anticyclonic eddies (ACs) have been repeatedly observed over several North Atlantic basins characterized by bowl-like topographic depressions. Motivated by these previous findings, the authors conduct numerical simulations of the spindown of eddies initialized in idealized topographic bowls. In experiments with one or two isopycnal layers, it is found that a bowl-trapped AC is an emergent circulation pattern under a wide range of parameters. The trapped AC, often formed by repeated mergers of ACs over the bowl interior, is characterized by anomalously low potential vorticity (PV). Several PV segregation mechanisms that can contribute to the AC formation are examined. In one-layer experiments, the dynamics of the AC are largely determined by a nonlinearity parameter ϵ that quantifies the vorticity of the AC relative to the bowl’s topographic PV gradient. The AC is trapped in the bowl for low , but for moderate values () partial PV segregation allows the AC to reside at finite distances from the center of the bowl. For higher , eddies freely cross the topography and the AC is not confined to the bowl. These regimes are characterized across a suite of model experiments using ϵ and a PV homogenization parameter. Two-layer experiments show that the trapped AC can be top or bottom intensified, as determined by the domain-mean initial vertical energy distribution. These findings contrast with previous theories of mesoscale turbulence over topography that predict the formation of a prograde slope current, but do not predict a trapped AC.


2008 ◽  
Vol 136 (5) ◽  
pp. 1582-1592 ◽  
Author(s):  
John W. Nielsen-Gammon ◽  
David A. Gold

Abstract Idealized numerical experiments are conducted to understand the effect of upper-tropospheric potential vorticity (PV) anomalies on an environment conducive to severe weather. Anomalies are specified as a single isolated vortex, a string of vortices analogous to a negatively tilted trough, and a pair of string vortices analogous to a position error in a negatively tilted trough. The anomalies are placed adjacent to the tropopause along a strong upper-level jet at a time just prior to a major tornado outbreak and inverted using the nonlinear balance equations. In addition to the expected destabilization beneath and adjacent to a cyclonic PV anomaly, the spatial pattern of the inverted balanced streamfunction and height fields is distorted by the presence of the horizontal PV gradient along the upper-tropospheric jet stream. Streamfunction anomalies are elongated in the cross-jet direction, while height and temperature anomalies are elongated in the along-jet direction. The amplitude of the inverted fields, as well as the changes in CAPE associated with the inverted temperature perturbations, are linearly proportional to the amplitudes of the PV anomalies themselves, and the responses to complex PV perturbation structures are approximated by the sum of the responses to individual simple PV anomalies. This is true for the range of PV amplitudes tested, which was designed to mimic typical 6-h forecast or analysis errors and produced changes in CAPE beneath the trough of well over 100 J kg−1. Impacts on inverted fields are largest when the PV anomaly is on the anticyclonic shear side of the jet, where background PV is small, compared with the cyclonic shear side of the jet, where background PV is large.


Sign in / Sign up

Export Citation Format

Share Document